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Goal and Motivation

Our goal:

Weakly supervised instance segmentation for videos
e Supervision: frame level class labels
e Evaluation: FIS & VIS

Motivation:
e Existing methods suffer from two problems:
o Partial segmentation
o Missing object
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Overall Framework
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1. FlowlRN: Introduce motion into weakly supervised instance segmentation training
2. Mask-Consist: Add cross-frame temporal consistency to Mask-RCNN training
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@ Amplify CAMs using optical flow estimation

[1] Ahn, Jiwoon, Sunghyun Cho, and Suha Kwak. "Weakly supervised learning of instance segmentation with inter-pixel relations." Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019.
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flowlRN Results: Fix Missing Object
Amplify CAM using flow

IRN Results

IRN + fCAM Result
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flowlRN Results: Fix Incorrect Boundary

Add flow into boundary learning

Boundary ’ IRN Results

IRN + fBoundary Result
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MaskConsist

Goal: making Mask R-CNN training more robust
to noisy pseudo-labels

Solution:
- find “high-quality” mask predictions
- transfer them to neighboring frames as
new pseudo-labels

“High-quality” prediction:
- overlapped with flowIRN pseudo-labels
- temporally stable

Weakly Supervised Instance Segmentation for Videos with Temporal Mask Consistency
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MaskConsist Results
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Frame Instance Segmentation Results

Methods ‘ Video Info | Supervision | APso Methods Supervision | Instance seg | Semantic seg
Mask R-CNN [17] X Mask 78.24 Mask R-CNN [17] Mask 38.73 79.23
il ibd ! e L WISE [27] Class 10.51 35.82
WISERE] o lass 2852 FOF [291+MCG [41]|  Class 10.73 33.26
F2F [291+MCG [41] v Class 26.31 IRN [6] Elas 5.8 48
IRN [6] X Class 29.64 ] o ' '

IRN [6]+F2F[29] v Class 30.27 ?N [6]+F2F129] gass 12(5)2 33';2
Ours v Class 34.66 LS o a5 ; :

Ours (self-training) v Cloiss 36.00 Ours (self-training) Class 16.82 41.31

Table 1. Frame-level instance segmentation performance (APs)  laple 2. F_rame-level inst.ance segmen.tati(_)n (A-F_) 50) and semantic
on YTVIS train_val split. segmentation (loU) on Cityscapes validation split.
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Video Instance Segmentation Results

Methods Train_Val Split Validation Split

'm,AP AP50 AP75 AR1 ARlo mAP AP50 AP75 ARl ARlo

Fidlly supervised. TIoUTracker+ [5¢] - - - - - 23.6 | 39.2 | 25.5 | 26.2 | 30.9
learning methods DeepSORT [57] - - - - - 26.1 | 429 | 26.1 | 27.8 | 31.3
MaskTrack [58] - — - - - 30.3 | 51.1 | 32.6 | 31.0 | 35.5

Weakly supervised WISE [27] 8.7 | 221 | 5.5 9.8 | 10.7 | 6.3 | 175 | 3.5 7.1 7.8
Jesmiing msthods IRN [6] 108 | 264 | 7.7 | 126 | 144 | 7.3 | 180 | 3.0 9.0 | 10.7
Ours 141 | 344 | 94 | 16.0 | 179 | 105 | 27.2 | 6.2 | 12.3 | 13.6
Table 3. Video instance segmentation results on Youtube-VIS dataset.
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Figure 4. Example Video instance segmentation results from our method on Youtube-VIS dataset.
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The end.
Thank you for your attention.



