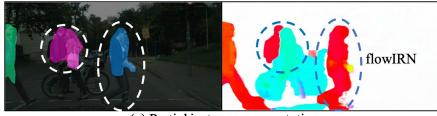


Weakly Supervised Instance Segmentation for Videos with Temporal Mask Consistency

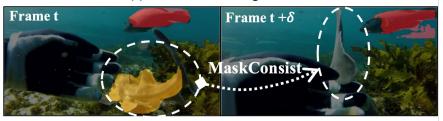
Qing Liu¹, Vignesh Ramanathan², Dhruv Mahajan², Alan Yuille¹, Zhenheng Yang²

¹Johns Hopkins University ²Facebook

Goal and Motivation


Our goal:

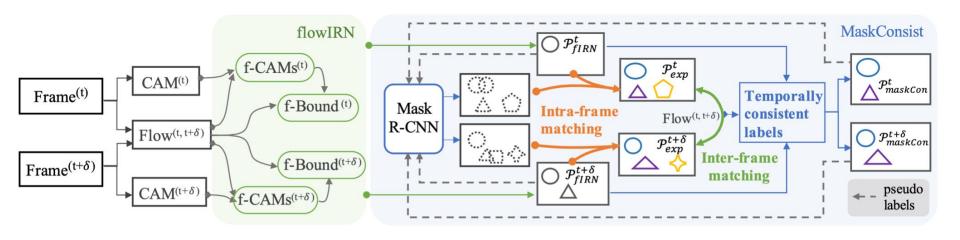
Weakly supervised instance segmentation for videos


- Supervision: frame level class labels
- Evaluation: FIS & VIS

Motivation:

- Existing methods suffer from two problems:
 - Partial segmentation
 - Missing object
- Video data can help

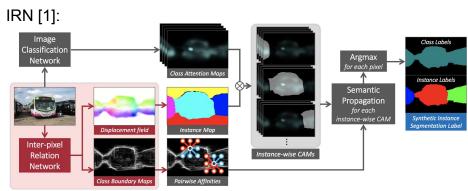
(a) Partial instance segmentation

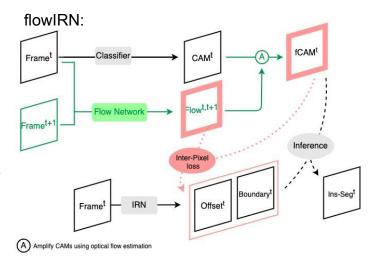


(b) Missing object instance

Overall Framework

- 1. FlowIRN: Introduce motion into weakly supervised instance segmentation training
- 2. **Mask-Consist**: Add cross-frame temporal consistency to Mask-RCNN training

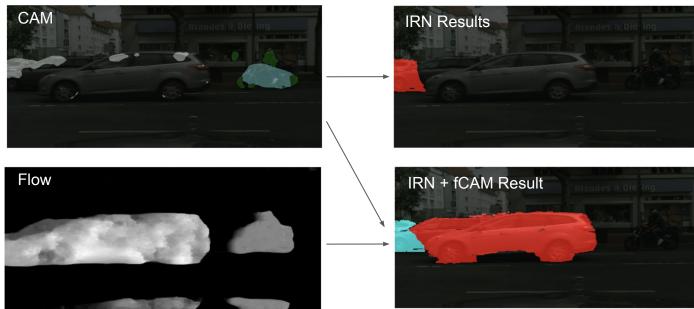

flowIRN


- f-CAM: Use flow to amplify CAMs
- Objects of interest tend to be close to the camera and have large motion

$$\text{f-CAM}_c(\boldsymbol{x}) = \text{CAM}_c(\boldsymbol{x}) \times A^{\mathbb{I}(||\mathcal{F}(\boldsymbol{x})||_2 > T)}$$

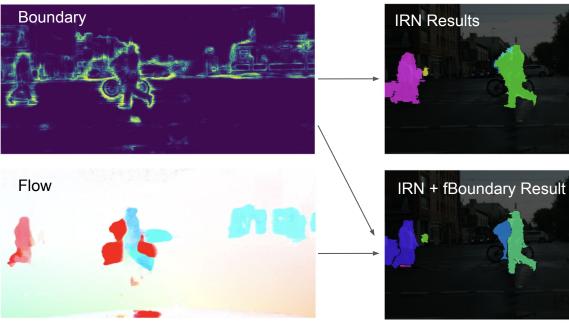
- f-boundary: Use Flow to guide the learning of instance boundary
- Pixels of the same instance tend to move together

$$\mathcal{L}_{\mathcal{F}}^{\mathcal{B}} = \sum_{oldsymbol{x}_j \in \mathcal{N}_i} ||\mathcal{F}'(oldsymbol{x}_i) - \mathcal{F}'(oldsymbol{x}_j)||lpha_{i,j} + \lambda|1 - lpha_{i,j}|$$



flowIRN Results: Fix Missing Object

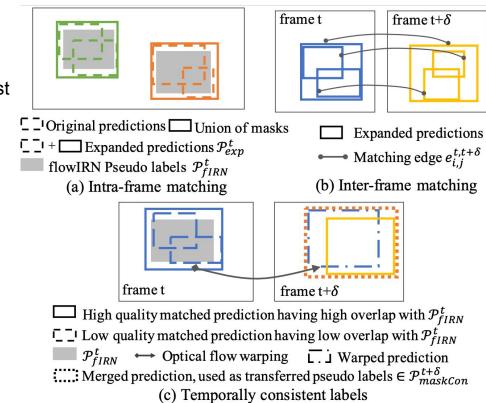
Amplify CAM using flow



flowIRN Results: Fix Incorrect Boundary

Add flow into boundary learning

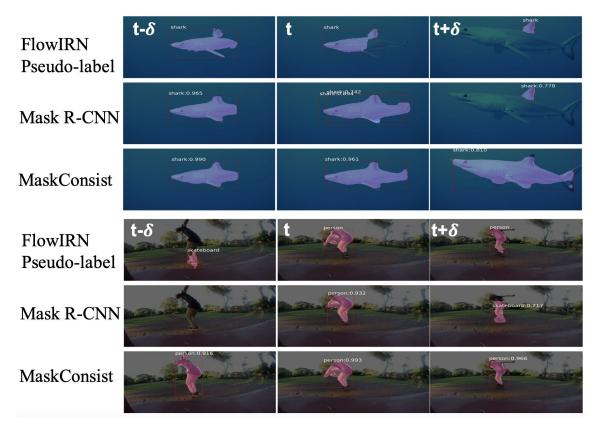
MaskConsist


Goal: making Mask R-CNN training more robust to noisy pseudo-labels

Solution:

- find "high-quality" mask predictions
- transfer them to neighboring frames as new pseudo-labels

"High-quality" prediction:


- overlapped with flowIRN pseudo-labels
- temporally stable

MaskConsist Results

Frame Instance Segmentation Results

Methods	Video Info Supervision		AP_{50}	
Mask R-CNN [17]	Х	Mask	78.24	
WSIS-BBTP [20]	X	Bbox	46.80	
WISE [27]	Х	Class	24.54	
F2F [29]+MCG [41]	✓	Class	26.31	
IRN [6]	X	Class	29.64	
IRN [6]+F2F[29]	✓	Class	30.27	
Ours	✓	Class	34.66	
Ours (self-training)	✓	Class	36.00	

Table 1. Frame-level instance segmentation performance (AP_{50}) on YTVIS train_val split.

Methods	Supervision	Instance seg	Semantic seg
Mask R-CNN [17]	Mask	38.73	79.23
WISE [27]	Class	10.51	35.82
F2F [29]+MCG [41]	Class	10.73	33.26
IRN [6]	Class	12.33	33.48
IRN [6]+F2F[29]	Class	12.53	34.17
Ours	Class	16.05	39.88
Ours (self-training)	Class	16.82	41.31

Table 2. Frame-level instance segmentation (AP_{50}) and semantic segmentation (IoU) on Cityscapes validation split.

Video Instance Segmentation Results

Methods		Train_Val Split				Validation Split					
		mAP	AP_{50}	AP_{75}	AR_1	AR_{10}	mAP	AP_{50}	AP_{75}	AR_1	AR_{10}
Fully supervised learning methods	IoUTracker+ [58]	-	-	-	-	-	23.6	39.2	25.5	26.2	30.9
	DeepSORT [57]	-	-	-	-	-	26.1	42.9	26.1	27.8	31.3
	MaskTrack [58]	-	-	-	-	-	30.3	51.1	32.6	31.0	35.5
Weakly supervised learning methods	WISE [27]	8.7	22.1	5.5	9.8	10.7	6.3	17.5	3.5	7.1	7.8
	IRN [6]	10.8	26.4	7.7	12.6	14.4	7.3	18.0	3.0	9.0	10.7
	Ours	14.1	34.4	9.4	16.0	17.9	10.5	27.2	6.2	12.3	13.6

Table 3. Video instance segmentation results on Youtube-VIS dataset.

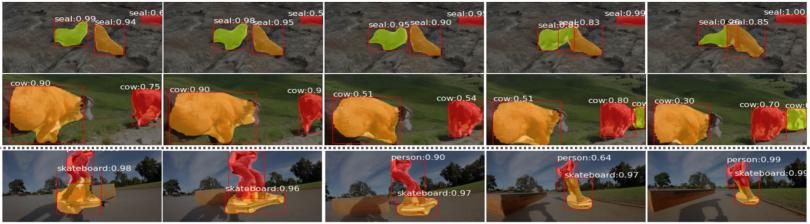


Figure 4. Example Video instance segmentation results from our method on Youtube-VIS dataset.

The end. Thank you for your attention.